Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Water  /  Vol: 10 Par: 10 (2018)  /  Artículo
ARTÍCULO
TITULO

Solitary Wave Generation and Propagation under Hypergravity Fields

Qiao-Sha Wang    
Ming-Hai Li and Dai-Wei Li    

Resumen

The traditional small-scale marine engineering experiments that are performed under normal gravity fields always encounter one stubborn difficulty related to full-scale prototype models. However, the difficulty can be resolved by centrifuge experiments that can generate hypergravity fields in which the centrifuge acceleration is many times greater than the gravity acceleration. In this study, the generation of solitary waves in hypergravity fields is proposed using solitary wavemaker theory and scaling laws. A series of case simulations are performed under four different gravity fields (1 g, 30 g, 50 g, and 100 g, where g is the gravity acceleration). These cases are presented and discussed in detail to understand and verify the scaling laws and the stability of the solitary wave during its generation and propagation within hypergravity fields. The numerical results show that the waveform and the static pressure field that are obtained during the simulations performed under different gravity fields agree well at the macroscale. Since the velocity field is sensitive to wave attenuation, time lag, fluid viscosity and surface tension, some discrepancies can be found in the velocity field. It should be noted that the fluid viscosity and surface tension have influence on the wave attenuation. However, wave attenuation and time lag can be offset by a well-designed incident wave condition.

 Artículos similares

       
 
Mengyu Li, Xizeng Zhao, Mingjian Yin, Yiyang Zong, Jinyou Lu, Shiming Yao, Geng Qu and Hualong Luan    
The interaction between solitary waves and underwater barriers is investigated using our in-house code, entitled VPM (volume-average/point-value multi-moment)?THINC/QQ (THINC method with quadratic surface representation and Gaussian quadrature)-coupled m... ver más

 
Jinzhao Li, Xuan Kong, Yilin Yang, Jiexuan Hu and Ruijia Jin    
Waves or tsunamis in the onshore area could induce severe scour at the structure foundations, threatening the stability of the structure. This paper presents a numerical study of the solitary wave-induced flow and scour around a square onshore structure.... ver más

 
Pavel V. Zakharov, Elena A. Korznikova, Artem A. Izosimov and Andrey S. Kochkin    
This study examines the mechanism of nonlinear supratransmission (NST), which involves the transfer of disturbance to discrete media at frequencies not supported by the structure. We considered a model crystal with A3B stoichiometry. The investigation wa... ver más
Revista: Computation

 
Youkou Dong, Enjin Zhao, Lan Cui, Yizhe Li and Yang Wang    
Submarine pipelines are widely adopted around the world for transporting oil and gas from offshore fields. They tend to be severely ruined by the extreme waves induced by the natural disaster, such as hurricanes and tsunamis. To maintain the safety and f... ver más

 
Sarat Chandra Mohapatra, Hafizul Islam, Thiago S. Hallak and C. Guedes Soares    
A mathematical model of solitary wave interaction with a pontoon-type rigid floating structure over a flat bottom is formulated based on Boussinesq-type equations under weakly nonlinear dispersive waves. Based on the higher-order Boussinesq equations, th... ver más