Resumen
The Mkurumudzi River originates in the Shimba hills and runs through Kwale County on the Kenyan Coast. Study on this river has been informed by the many economic activities that the river supports, which include sugarcane plantations, mining, tourism and subsistence farming. The main objective of this study was to use the soil moisture accounting (SMA) model specified in the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) settings for the continuous modeling of stream flow in the Mkurumudzi catchment. Data from past years were compared with observed stream flow data in order to evaluate whether the model can be used for further prediction. The calibration was performed using data from 1988 to 1991 and validation for the period from 1992 to 1995 at a daily time step. The model performance was evaluated based on computed statistical parameters and visual checking of plotted hydrographs. For the calibration period of the continuous modeling, the performance of the model was very good, with a coefficient of determination R2 = 0.80, Nash-Sutcliffe Efficiency NSE = 0.80, index of agreement d = 0.94, and a Root Mean Squared Error (RMSE)/observations? standard deviation ratio?RSR = 0.46. Similarly, the continuous model performance for the validation period was good, with R2 = 0.67, NSE = 0.65, RSR = 0.62 and d = 0.88. Based on these performance results, the SMA model in the HEC-HMS was found to give a satisfactory prediction of stream flow in the Mkurumudzi Catchment. The sensitivity analysis of the model parameters was performed, and the different parameters were ranked according to their sensitivity in terms of percent change in simulated runoff volume, peaks, Nash-Efficiency, seven-day low flow and base flow index. Sensitivity analysis helped to understand the relationships between the key model parameters and the variables.