Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Cavitation on Model- and Full-Scale Marine Propellers: Steady And Transient Viscous Flow Simulations At Different Reynolds Numbers

Ville Viitanen    
Timo Siikonen and Antonio Sánchez-Caja    

Resumen

In this paper, we conducted numerical simulations to investigate single and two-phase flows around marine propellers in open-water conditions at different Reynolds number regimes. The simulations were carried out using a homogeneous compressible two-phase flow model with RANS and hybrid RANS/LES turbulence modeling approaches. Transition was accounted for in the model-scale simulations by employing an LCTM transition model. In model scale, also an anisotropic RANS model was utilized. We investigated two types of marine propellers: a conventional and a tip-loaded one. We compared the results of the simulations to experimental results in terms of global propeller performance and cavitation observations. The propeller cavitation, near-blade flow phenomena, and propeller wake flow characteristics were investigated in model- and full-scale conditions. A grid and time step sensitivity studies were carried out with respect to the propeller performance and cavitation characteristics. The model-scale propeller performance and the cavitation patterns were captured well with the numerical simulations, with little difference between the utilized turbulence models. The global propeller performance and the cavitation patterns were similar between the model- and full-scale simulations. A tendency of increased cavitation extent was observed as the Reynolds number increases. At the same time, greater dissipation of the cavitating tip vortex was noted in the full-scale conditions.

 Artículos similares

       
 
Tao He, Yingzhi Zhou, Yong Liu and Yang Xia    
The cavitation phenomenon and shaft deformation have a significant impact on the tribological performance of the journal bearing. A mixed lubrication model is developed that takes into account surface roughness and asperity contact, as well as the effect... ver más
Revista: Applied Sciences

 
Antti Hynninen, Ville Viitanen, Jukka Tanttari, Rhena Klose, Claudio Testa and Jussi Martio    
This work focuses on the main issues related to noise measurements in cavitation tunnels. The scope of the paper is to twofold: to obtain a better understanding on the main phenomena underlying experiments and to define consistent cavitation tunnel measu... ver más

 
Rongsheng Zhu, Wenhao Shi, Gongchang Gan, Huairui Li, Dawei Yang, Yuchen Duan and Qiang Fu    
To investigate the transient characteristics of high-speed axial flow water-jet pumps during start-up and emergency acceleration as well as to analyze how different accelerations affect the performance of internal flow, the k?? turbulence model of the SS... ver más

 
Yingna Liang, Cunyuan Wang, Wei Wang, Hao Xing, Zhepeng Zhang and Dianrong Gao    
The slipper pair is the crucial friction pair of the seawater axial piston pump. Taking seawater as the working medium will inevitably affect the bearing performance of the slipper pair. In this paper, a seawater axial piston pump slipper pair model with... ver más

 
Qinghui Meng, Xi Shen, Xutao Zhao, Gang Yang and Desheng Zhang    
Cavitation is one of the most important aspects of the stable and safe operation of a centrifugal pump. To examine the dynamics of cavitation vortex in a centrifugal pump, the cavitating flow is investigated by using the modified shear stress transport (... ver más