Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

A Hierarchical Sparse Discriminant Autoencoder for Bearing Fault Diagnosis

Mengjie Zeng    
Shunming Li    
Ranran Li    
Jiantao Lu    
Kun Xu    
Xianglian Li    
Yanfeng Wang and Jun Du    

Resumen

Although some traditional autoencoders and their extensions have been widely used in the research of intelligent fault diagnosis of rotating parts, their feature extraction capabilities are limited without label information. In response to this problem, this research proposes a hierarchical sparse discriminant autoencoder (HSDAE) method for fault diagnosis of rotating components, which is a new semi-supervised autoencoder structure. By considering the sparsity of autoencoders, a hierarchical sparsity strategy was proposed to improve the stacked sparsity autoencoders, and the particle swarm optimization algorithm was used to obtain the optimal sparsity parameters to improve network performance. In order to enhance the classification of the autoencoder, a class aggregation and class separability strategy was used, which is an additional discriminative distance that was added as a penalty term in the loss function to enhance the feature extraction ability of the network. Finally, the reliability of the proposed method was verified on the bearing data set of Case Western Reserve University and the bearing data set of the laboratory test platform. The results of comparison with other methods show that the HSDAE method can enhance the feature extraction ability of the network and has reliability and stability for different data sets.

 Artículos similares

       
 
Yunshan Sun, Liyi Zhang, Yanqin Li and Juan Meng    
Computed tomography (CT) image reconstruction and restoration are very important in medical image processing, and are associated together to be an inverse problem. Image iterative reconstruction is a key tool to increase the applicability of CT imaging a... ver más
Revista: Algorithms

 
Junjie Zeng, Long Qin, Yue Hu, Quanjun Yin and Cong Hu    
Since an individual approach can hardly navigate robots through complex environments, we present a novel two-level hierarchical framework called JPS-IA3C (Jump Point Search improved Asynchronous Advantage Actor-Critic) in this paper for robot navigation ... ver más
Revista: Applied Sciences