Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Big Data Maturity Assessment Models: A Systematic Literature Review

Zaher Ali Al-Sai    
Mohd Heikal Husin    
Sharifah Mashita Syed-Mohamad    
Rosni Abdullah    
Raed Abu Zitar    
Laith Abualigah and Amir H. Gandomi    

Resumen

Big Data and analytics have become essential factors in managing the COVID-19 pandemic. As no company can escape the effects of the pandemic, mature Big Data and analytics practices are essential for successful decision-making insights and keeping pace with a changing and unpredictable marketplace. The ability to be successful in Big Data projects is related to the organization?s maturity level. The maturity model is a tool that could be applied to assess the maturity level across specific key dimensions, where the maturity levels indicate an organization?s current capabilities and the desirable state. Big Data maturity models (BDMMs) are a new trend with limited publications published as white papers and web materials by practitioners. While most of the related literature might not have covered all of the existing BDMMs, this systematic literature review (SLR) aims to contribute to the body of knowledge and address the limitations in the existing literature about the existing BDMMs, assessment dimensions, and tools. The SLR strategy in this paper was conducted based on guidelines to perform SLR in software engineering by answering three research questions: (1) What are the existing maturity assessment models for Big Data? (2) What are the assessment dimensions for Big Data maturity models? and (3) What are the assessment tools for Big Data maturity models? This SLR covers the available BDMMs written in English and developed by academics and practitioners (2007?2022). By applying a descriptive qualitative content analysis method for the reviewed publications, this SLR identified 15 BDMMs (10 BDMMs by practitioners and 5 BDMMs by academics). Additionally, this paper presents the limitations of existing BDMMs. The findings of this paper could be used as a grounded reference for assessing the maturity of Big Data. Moreover, this paper will provide managers with critical insights to select the BDMM that fits within their organization to support their data-driven decisions. Future work will investigate the Big Data maturity assessment dimensions towards developing a new Big Data maturity model.

 Artículos similares

       
 
Wei-Ling Hsu, Yi-Jheng Chang, Lin Mou, Juan-Wen Huang and Hsin-Lung Liu    
Historic urban areas are the foundations of urban development. Due to rapid urbanization, the sustainable development of historic urban areas has become challenging for many cities. Elements of tourism and tourism service facilities play an important rol... ver más

 
Shaopan Li, Yiping Lin and Hong Huang    
Estimating disaster relief supplies is crucial for governments coordinating and executing disaster relief operations. Rapid and accurate estimation of disaster relief supplies can assist the government to optimize the allocation of resources and better o... ver más

 
Andreas F. Gkontzis, Sotiris Kotsiantis, Georgios Feretzakis and Vassilios S. Verykios    
In an epoch characterized by the swift pace of digitalization and urbanization, the essence of community well-being hinges on the efficacy of urban management. As cities burgeon and transform, the need for astute strategies to navigate the complexities o... ver más

 
Kenneth David Strang    
A critical worldwide problem is that ransomware cyberattacks can be costly to organizations. Moreover, accidental employee cybercrime risk can be challenging to prevent, even by leveraging advanced computer science techniques. This exploratory project us... ver más

 
Lei Zhou, Weiye Xiao, Chen Wang, Haoran Wang     Pág. 143 - 161
Human mobility datasets, such as traffic flow data, reveal the connections between urban spaces. A novel framework is proposed to explore the spatial association between urban commercial and residential spaces via consumption travel flows in Shanghai. A ... ver más