Resumen
Karst aquifer recharge areas are usually difficult to identify because of the complexity of these aquifers? characteristics. On the other hand, their identification is very important in the aim of protecting the groundwater resources that these aquifers host. Regarding this topic, this paper presents an approach aimed at identifying karst aquifer recharge areas by the application of oxygen-18 and deuterium isotopes composition of groundwater coupled with hydrological features. Oxygen-18 and deuterium isotope composition of Capodacqua di Spigno Spring, in the South of the Latium Region, has been applied with rainfall and discharge values related to the feeding aquifer of this spring. As d18O and d2H values of groundwater samples are natural tracers of the recharge area?s elevation, we propose a model, based on the distribution of the basin surfaces involved as recharge areas, in relation to elevations. The model estimates, for any discharge value, the percentage of the topographic area involved in the aquifer recharge. The setting up of this simulated distribution is supported by a Weibull cumulative probability function. The results show that the measured discharges increase as larger areas with lower elevations are involved in the recharge process.