Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 18 (2020)  /  Artículo
ARTÍCULO
TITULO

ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks

Junsang Park    
Jin-kook Kim    
Sunghoon Jung    
Yeongjoon Gil    
Jong-Il Choi and Ho Sung Son    

Resumen

Accurate electrocardiogram (ECG) interpretation is crucial in the clinical ECG workflow because it is most likely associated with a disease that can cause major problems in the body. In this study, we proposed an ECG-signal multi-classification model using deep learning. We used a squeeze-and-excitation residual network (SE-ResNet), which is a residual network(ResNet) with a squeeze-and-excitation block. Experiments were performed for seven different types of lead-II ECG data obtained from the Korea University Anam Hospital in South Korea. These seven types are normal sinus rhythm, atrial fibrillation, atrial flutter, sinus bradycardia, sinus tachycardia, premature ventricular contraction and first-degree atrioventricular block. We compared the SE-ResNet with a ResNet, as a baseline model, for various depths of layer (18/34/50/101/152). We confirmed that the SE-ResNet had better classification performance than the ResNet, for all layers. The SE-ResNet classifier with 152 layers achieved F1 scores of 97.05% for seven-class classifications. Our model surpassed the baseline model, ResNet, by +1.40% for the seven-class classifications. For ECG-signal multi-classification, considering the F1 scores, the SE-ResNet might be better than the ResNet baseline model.