Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Effects of Fine Sediment on Seagrass Meadows: A Case Study of Zostera muelleri in Pauatahanui Inlet, New Zealand

Iñigo Zabarte-Maeztu    
Fleur E. Matheson    
Merilyn Manley-Harris    
Robert J. Davies-Colley    
Megan Oliver and Ian Hawes    

Resumen

Seagrass meadows are vulnerable to fine sediment (mud) pollution, with impacts usually attributed to reduction in submerged light. Here we tested two non-exclusive hypotheses, that mud particles (<63 µm) impact seagrasses through both (1) the light climate and (2) changes in substrate physico-chemistry. We tested these hypotheses in Pauatahanui Inlet, New Zealand, by comparing seagrass presence, abundance, and health, together with light climate and substrate physico-chemistry at contrasting habitats where (1) seagrass used to thrive but no longer grows (historical seagrass), (2) seagrass still persists (existing seagrass) and (3) seagrass has been present recently, but not currently (potential seagrass). Historical seagrass substrate had significantly higher mud (35% average), bulk density (1.5 g cm-3), porewater ammonium concentration (65 µM), and a more reduced redox profile (negative redox at only 2 cm soil depth) as well as a lower light availability when submerged compared to other habitats, while total daily light exposure differed little between habitats. This suggests that failure of seagrass to recolonize historical seagrass habitat reflects substrate muddiness and consequent unfavorable rhizosphere conditions. Our results provide evidence for the multi-stressor effects of fine sediment on seagrasses, with substrate suitability for seagrass being detrimentally affected even where light exposure seems sufficient.

 Artículos similares

       
 
M. S. Shyam Sunder, Vinay Anand Tikkiwal, Arun Kumar and Bhishma Tyagi    
Aerosols play a crucial role in the climate system due to direct and indirect effects, such as scattering and absorbing radiant energy. They also have adverse effects on visibility and human health. Humans are exposed to fine PM2.5, which has adverse hea... ver más
Revista: AI

 
Nayan Mallick, Kevin B. Johnson and Charles A. Jacoby    
To yield environmental benefits, fine sediments with ~10% organic matter, termed muck, were dredged from a tributary to the Indian River Lagoon. Key changes were documented by sampling amphipods, sediments, and the water column near the bottom before dre... ver más

 
James Slingsby, Beth E. Scott, Louise Kregting, Jason McIlvenny, Jared Wilson and Benjamin J. Williamson    
Tidal energy is a rapidly developing area of the marine renewable energy sector that requires converters to be placed within areas of fast current speeds to be commercially viable. Tidal environments are also utilised by marine fauna (marine mammals, sea... ver más

 
Will L. Varela, Neal D. Mundahl, Silas Bergen, David F. Staples, Jennifer Cochran-Biederman and Cole R. Weaver    
Agricultural activities within watersheds can have negative effects on river ecosystems, but numerous conservation practices can be implemented that reduce soil erosion, increase water infiltration, slow runoff, and improve soil quality. Our study focuse... ver más
Revista: Water

 
Zezhi Deng, Xiangshan Chen, Wei Jin and Gang Wang    
Internal erosion refers to the seepage-induced fine particle migration phenomenon in soil. Deep alluviums in valleys usually contain cohesionless gap-graded sandy gravels with poor internal stability. The construction of embankment dams on such alluviums... ver más
Revista: Water