Resumen
For too long, many refined transportation models have focused solely on private and public transportation, assuming that bicycles only require simple models, such as bird flight distance or trips on horizontal tracks at a constant speed. This paper aims to study the impact of the road characteristics, such as road gradient, type of road and pavement surface of the road, on cyclists? behavior using dedicated modules of MATSim. For that, we compare two approaches: a standard approach which does not consider the road characteristics, and a second approach that uses MATSim bicycle extension of Ziemke et al. The two approaches are analyzed over a sub-regional area around a district, focusing on a suburban city with an undulating relief made of average-to-steep hills. The focus is on the bicycle transportation model because the catchment area has a particularly challenging altitude profile and a large variety of roads, whether in type?from residential to national highway?or in pavement surface due to the number of green areas, such as parks and forests. This area is defined as a rather large 7 × 12 km, including five suburban cities in the South of Paris, France. A synthetic population of 126,000 agents was generated at a regional scale, with chains of activity made of work, education, shopping, leisure, restaurant and kindergarten, with activity-time choice, location choice and modal choice. We wanted to know how accurately a standard model of bicycle travels can be made with a 2D flat Earth assumption by comparing it to an algorithm extension that explicitly considers road characteristics in cyclists? route choices. Our finding is that the MATSim bicycle extension model impacts mainly the long trips. Otherwise, the differences are minimal between the two models in terms of travel time and travel distance.