Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Multi-Color Channels Based Group Sparse Model for Image Restoration

Yanfen Kong    
Caiyue Zhou    
Chuanyong Zhang    
Lin Sun and Chongbo Zhou    

Resumen

The group sparse representation (GSR) model combines local sparsity and nonlocal similarity in image processing, and achieves excellent results. However, the traditional GSR model and all subsequent improved GSR models convert the RGB space of the image to YCbCr space, and only extract the Y (luminance) channel of YCbCr space to change the color image to a gray image for processing. As a result, the image processing process cannot be loyal to each color channel, so the repair effect is not ideal. A new group sparse representation model based on multi-color channels is proposed in this paper. The model processes R, G and B color channels simultaneously when processing color images rather than processing a single color channel and then combining the results of different channels. The proposed multi-color-channels-based GSR model is compared with state-of-the-art methods. The experimental contrast results show that the proposed model is an effective method and can obtain good results in terms of objective quantitative metrics and subjective visual effects.

 Artículos similares

       
 
Fadi Shaar, Arif Yilmaz, Ahmet Ercan Topcu and Yehia Ibrahim Alzoubi    
Recognizing aircraft automatically by using satellite images has different applications in both the civil and military sectors. However, due to the complexity and variety of the foreground and background of the analyzed images, it remains challenging to ... ver más
Revista: Applied Sciences

 
Yuchen Dong, Heng Zhou, Chengyang Li, Junjie Xie, Yongqiang Xie and Zhongbo Li    
Camouflaged object detection (COD) is an arduous challenge due to the striking resemblance of camouflaged objects to their surroundings. The abundance of similar background information can significantly impede the efficiency of camouflaged object detecti... ver más
Revista: Applied Sciences

 
Jiaming Bian, Ye Liu and Jun Chen    
In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network?s performance ... ver más
Revista: Applied Sciences

 
Nadia Brancati and Maria Frucci    
To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the development of histological whole slide image (WSI) classification methods. However, automatic classification is challenging due to the high-resolution data and ... ver más
Revista: Information

 
Ruoyang Li, Shuping Xiong, Yinchao Che, Lei Shi, Xinming Ma and Lei Xi    
Semantic segmentation algorithms leveraging deep convolutional neural networks often encounter challenges due to their extensive parameters, high computational complexity, and slow execution. To address these issues, we introduce a semantic segmentation ... ver más
Revista: Algorithms