Resumen
Magnetic carbon materials as adsorbents for dye removing have attracted increasing attention because of their magnetic separation feature. However, the immobilization of large magnetic particles on a carbon matrix greatly decreases the available sites for adsorption, resulting in a low adsorption capacity. The synthesis of magnetic carbon materials as adsorbents for dye adsorption with high adsorption capacity remains challenging. Herein, porous carbon (PC) was firstly synthesized through the calcination of macroporous acrylic type cation exchange resin. The as-prepared PC was applied as a matrix to deposit nano-sized Fe3O4 nanoparticles (MPC) via a facile one-pot solvothermal strategy. The nano-sized Fe3O4 nanoparticles (5.19 nm in diameter) are uniformly distributed on the PC surface. The MPC possesses an exceptional performance for methylene blue removal (qe = 214.4 mg g-1) at room temperature, outperforming most previous magnetic carbon adsorbents. The large surface area of the MPC originated from the combined advantages of PC and nano-sized Fe3O4 must be ascribed to the high performance of MPC composite toward methylene blue adsorption.