Resumen
Probabilistic analyses of carbon fabric composites were conducted using the Monte Carlo simulation based on a homogenization technique to evaluate the mechanical properties of composites and their stochastic nature. First, the homogenization analysis was performed for a micro-level structure, which fiber and matrix are combined. The effective properties obtained from this analysis were compared with the results from the rule of mixture theory to verify the homogenization analysis. And, tensile tests were conducted to clearly evaluate the result and the reliability was verified by comparing the results of the tensile tests and homogenization analysis. In addition, the Monte Carlo simulation was performed based on homogenization analyses to consider the uncertainties of the micro-level structure combined of fiber and matrix. Next, the results of this simulation were applied to the macro-level structure combined of the tow and matrix to perform the Monte Carlo simulation based on the homogenization technique. Finally, the sensitivity analysis was conducted to identify the effect of constituents of the carbon plain weave composite and the linear correlation of the micro- and macro-level structures combined of the fiber/matrix and tow/matrix, respectively. The findings of this study verified that the effective properties of the plain weave carbon/epoxy composite and their uncertainties depended on the properties of the carbon fiber and epoxy, which are the basic constituents of plain weave carbon/epoxy composites.