Resumen
The elliptic curve cryptosystem (ECC) has been proven to be vulnerable to non-invasive side-channel analysis attacks, such as timing, power, visible light, electromagnetic emanation, and acoustic analysis attacks. In ECC, the scalar multiplication component is considered to be highly susceptible to side-channel attacks (SCAs) because it consumes the most power and leaks the most information. In this work, we design a robust asynchronous circuit for scalar multiplication that is resistant to state-of-the-art timing, power, and fault analysis attacks. We leverage the genetic algorithm with multi-objective fitness function to generate a standard Boolean logic-based combinational circuit for scalar multiplication. We transform this circuit into a multi-threshold dual-spacer dual-rail delay-insensitive logic (MTD3L" role="presentation" style="position: relative;">??????3??MTD3L
M
T
D
3
L
) circuit. We then design point-addition and point-doubling circuits using the same procedure. Finally, we integrate these components together into a complete secure and dependable ECC processor. We design and validate the ECC processor using Xilinx ISE 14.7" role="presentation" style="position: relative;">14.714.7
14.7
and implement it in a Xilinx Kintex-7 field-programmable gate array (FPGA).