Resumen
Early-stage detection of cardiac autonomic neuropathy (CAN) is important for better management of the disease and prevents hospitalization. This study has investigated the complex nature of PR, QT, RR, and ST time segments of ECG signals by computing the fractal dimension (FD) of all segments from 20 min ECG recordings of people with different severity of the disease and healthy individuals. The mean computed for each ECG time segment to distinguish between subjects was insufficient for an early diagnosis. Statistical analysis shows that the change of FD in various time segments of ECG throughout the recording was most suitable to assess the steps for severity in symptoms of CAN between the healthy and the subjects with early symptoms of CAN. The complexity of ECG features was evaluated using various classifier models, namely, support vector machine (SVM), naïve Bayes, random forest, K-nearest neighbor (KNN), AdaBoost, and neural networks. Performance measures were computed on all models, with a maximum neural network classifier having an accuracy of 96.9%. Feature ranking results show that fractal features have more significance than the time segments of ECG in differentiating the subjects. The results of statistical validation show that all the selected features based on ECG physiology proved to have an evident complexity change between normal and severity stages of CAN. Thus, this work reports the complexity analysis in all the selected time segments of ECG that can be an effective tool for early diagnostics for CAN.