Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Water  /  Vol: 11 Par: 2 (2019)  /  Artículo
ARTÍCULO
TITULO

Evaluation of Drydown Processes in Global Land Surface and Hydrological Models Using Flux Tower Evapotranspiration

Alberto Martínez-de la Torre    
Eleanor M. Blyth and Emma L. Robinson    

Resumen

A key aspect of the land surface response to the atmosphere is how quickly it dries after a rainfall event. It is key because it will determine the intensity and speed of the propagation of drought and also affects the atmospheric state through changes in the surface heat exchanges. Here, we test the theory that this response can be studied as an inherent property of the land surface that is unchanging over time unless the above- and below-ground structures change. This is important as a drydown metric can be used to evaluate a landscape and its response to atmospheric drivers in models used in coupled land?atmosphere mode when the forcing is often not commensurate with the actual atmosphere. We explore whether the speed of drying of a land unit can be quantified and how this can be used to evaluate models. We use the most direct observation of drying: the rate of change of evapotranspiration after a rainfall event using eddy-covariance observations, or commonly referred to as flux tower data. We analyse the data and find that the drydown timescale is characteristic of different land cover types, then we use that to evaluate a suite of global hydrological and land surface models. We show that, at the site level, the data suggest that evapotranspiration decay timescales are longer for trees than for grasslands. The studied model?s accuracy to capture the site drydown timescales depends on the specific model, the site, and the vegetation cover representation. A more robust metric is obtained by grouping the modeled data by vegetation type and, using this, we find that land surface models capture the characteristic timescale difference between trees and grasslands, found using flux data, better than large-scale hydrological models. We thus conclude that the drydown metric has value in understanding land?atmosphere interactions and model evaluation.

 Artículos similares

       
 
Yuxiu Liu, Xing Yuan, Yang Jiao, Peng Ji, Chaoqun Li and Xindai An    
Integrating numerical weather forecasts that provide ensemble precipitation forecasts, land surface hydrological modeling that resolves surface and subsurface hydrological processes, and artificial intelligence techniques that correct the forecast bias, ... ver más
Revista: Water

 
Yunshuai Li, Xinyuan Shao, Zhixiang Wu, Zhongyi Sun, Mingzhe Li, Lingxiu Jiang, Yuanhong Xian and Peng Wang    
Land surface temperature plays an important role in the water cycle and surface energy balance. Using data collected by a vorticity covariance tower from 2010 to 2022, the relative threshold method and TRM method were employed to study the land?atmospher... ver más
Revista: Water

 
Riguga Su, Chaobin Yang, Zhibo Xu, Tingwen Luo, Lilong Yang, Lifeng Liu and Chao Wang    
Urban landscape has important effects on urban climate, and the local climate zone (LCZ) framework has been widely applied in related studies. However, few studies have compared the relative contributions of LCZ on the urban thermal environment across di... ver más

 
Linfeng Wang, Shengbo Chen, Lei Chen, Zibo Wang, Bin Liu and Yucheng Xu    
Accurately mapping urban built-up areas is critical for monitoring urbanization and development. Previous studies have shown that Night light (NTL) data is effective in characterizing the extent of human activity. But its inherently low spatial resolutio... ver más

 
Gholamreza Eslamifar, Hamid Balali and Alexander Fernald    
Enhancing the comprehension of alterations in land use holds paramount importance for water management in semi-arid regions due to its effects on hydrology and agricultural economics. Allowing agricultural land to lie fallow has emerged as a technique to... ver más
Revista: Water