Resumen
In this study, the maximum work extraction from the incident solar energy on solar thermal collectors is investigated by coupling solar collectors with a Carnot machine. A simplified thermal model for the solar collector performance is developed in which the radiation losses play a significant role. In every examined case, the optimum operating temperature that leads to maximum work extraction is calculated. The final results are presented parametrically, covering a great variety of real solar collectors. Moreover, the validation procedure of the developed model proves high accuracy. The results show that non-concentrating collectors should operate up to 400 K while concentrating collectors in higher temperature levels. More specifically, a parabolic trough collector can operate efficiently in temperature levels up to 850 K, while solar dish collectors can operate efficiently in temperature levels up to 1100 K. The results of this study can be exploited for the preliminary design and optimization of solar thermal systems. Moreover, a clear and realistic upper limit concerning the exergy production of solar irradiation with solar thermal collectors is given.