Resumen
In recent years, several new technologies have enabled OLAP processing over Big Data sources. Among these technologies, we highlight those that allow data pre-aggregation because of their demonstrated performance in data querying. This is the case of Apache Kylin, a Hadoop based technology that supports sub-second queries over fact tables with billions of rows combined with ultra high cardinality dimensions. However, taking advantage of data pre-aggregation techniques to designing analytic models for Big Data OLAP is not a trivial task. It requires very advanced knowledge of the underlying technologies and user querying patterns. A wrong design of the OLAP cube alters significantly several key performance metrics, including: (i) the analytic capabilities of the cube (time and ability to provide an answer to a query), (ii) size of the OLAP cube, and (iii) time required to build the OLAP cube. Therefore, in this paper we (i) propose a benchmark to aid Big Data OLAP designers to choose the most suitable cube design for their goals, (ii) we identify and describe the main requirements and trade-offs for effectively designing a Big Data OLAP cube taking advantage of data pre-aggregation techniques, and (iii) we validate our benchmark in a case study.