Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Parametric Study on Mooring System Design of Submerged Floating Tunnel under Extreme Wave and Seismic Excitation

Woo Chul Chung    
Chungkuk Jin    
MooHyun Kim and Sewon Kim    

Resumen

This study proposes a mooring design strategy for a submerged floating tunnel (SFT) subject to extreme waves and earthquakes. Several critical design parameters, such as submerged depth and mooring station interval, are taken into account. As a target structure, a 700 m long SFT system with permanent stations at both ends, representing the fixed?fixed-end boundary condition, is established. To consider coupled dynamics between the tunnel and the mooring system with structural elasticity, an efficient time-domain simulation model is established. Three combinations of environmental conditions are considered: extreme wave only, extreme earthquake only, and both extreme earthquake and operating wave. First, to check the submerged-depth effect on the dynamic response of the SFT system, including mooring tension, two different submerged-depth (deep and shallow) types are simulated and analyzed. It is confirmed that the deep submerged-depth model (A-type) has an advantage under extreme wave conditions, whereas the shallow submerged-depth model (B-type) is equipped with better resistance when subject to an earthquake. Thus, the compromise submerged-depth model (C-type) is newly devised to enhance structural integrity under various environmental circumstances. Furthermore, a mooring station interval sensitivity test with the C-type is performed and demonstrates the integrity of the C-type.