Resumen
Snow contributes one of the main water sources to runoff in the arid region of China. A clear understanding of the spatiotemporal variation of snowfall is not only required for climate change assessment, but also plays a critical role in water resources management. However, in-situ observations or gridded datasets hardly meet the requirement and cannot provide precise spatiotemporal details on snowfall across the region. This study attempted to apply the Weather Research and Forecasting (WRF) model to clarify the spatiotemporal variation of snowfall and the ratio of snowfall to total precipitation over Xinjiang in China during the 1979?2015 period. The results showed that the snowfall increased in the southern edge of the Tarim Basin, the Ili Valley, and the Altay Mountains, but decreased in the Tianshan Mountains and the Kunlun Mountains. The snowfall/precipitation (S/P) ratio revealed the opposite trends in low-elevation regions and mountains in the study area. The S/P ratio rose in the Tarim Basin and the Junggar Basin, but declined in the Altay Mountains, the Tianshan Mountains, and the west edge of the Junggar Basin. The study area comprises two major rivers in the middle of the Tianshan Mountains. Both the runoff magnitude increase and earlier occurrence of snowmelt recharge in runoff identified for the 1980s were compared with the 2000s level in decreasing S/P ratio regions.