Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment

Alessandra Perna    
Linda Moretti    
Giorgio Ficco    
Giuseppe Spazzafumo    
Laura Canale and Marco Dell?Isola    

Resumen

Power to gas (PtG) is an emerging technology that allows to overcome the issues due to the increasingly widespread use of intermittent renewable energy sources (IRES). Via water electrolysis, power surplus on the electric grid is converted into hydrogen or into synthetic natural gas (SNG) that can be directly injected in the natural gas network for long-term energy storage. The core units of the Power to synthetic natural gas (PtSNG) plant are the electrolyzer and the methanation reactors where the renewable electrolytic hydrogen is converted to synthetic natural gas by adding carbon dioxide. A technical issue of the PtSNG plant is the different dynamics of the electrolysis unit and the methanation unit. The use of a hydrogen storage system can help to decouple these two subsystems and to manage the methanation unit for assuring long operation time and reducing the number of shutdowns. The purpose of this paper is to evaluate the energy storage potential and the technical feasibility of the PtSNG concept to store intermittent renewable sources. Therefore, different plant sizes (1, 3, and 6 MW) have been defined and investigated by varying the ratio between the renewable electric energy sent to the plant and the total electric energy generated by the renewable energy source (RES) facility based on a 12 MW wind farm. The analysis has been carried out by developing a thermochemical and electrochemical model and a dynamic model. The first allows to predict the plant performance in steady state. The second allows to forecast the annual performance and the operation time of the plant by implementing the control strategy of the storage unit. The annual overall efficiencies are in the range of 42?44% low heating value (LHV basis). The plant load factor, i.e., the ratio between the annual chemical energy of the produced SNG and the plant capacity, results equal to 60.0%, 46.5%, and 35.4% for 1, 3, and 6 MW PtSNG sizes, respectively.

 Artículos similares

       
 
Wenxue Dong, Yingsi Wu, Fei Liu, Hengtong Hu, Jianguo Yan, Hongbin Bai and Xuan Zhao    
Aiming to solve the problems of the large harvesting loss and low harvesting efficiency of wide- and narrow-row corn harvesting header in China, a method for the side installation of a header is proposed. A wide?narrow-row corn harvesting header with hig... ver más
Revista: Applied Sciences

 
S. Sayanthan, Hassimi Abu Hasan and Siti Rozaimah Sheikh Abdullah    
Floating aquatic macrophytes have a high level of proficiency in the removal of various contaminants, particularly nutrients, from wastewater. Due to their rapid growth rates, it is imperative to ensure the safe removal of the final biomass from the syst... ver más
Revista: Water

 
Charalampos S. Kouzinopoulos, Eleftheria Maria Pechlivani, Nikolaos Giakoumoglou, Alexios Papaioannou, Sotirios Pemas, Panagiotis Christakakis, Dimosthenis Ioannidis and Dimitrios Tzovaras    
Citizen science reinforces the development of emergent tools for the surveillance, monitoring, and early detection of biological invasions, enhancing biosecurity resilience. The contribution of farmers and farm citizens is vital, as volunteers can streng... ver más

 
Busra Besevli, Erhan Kayabasi, Abdulrazzak Akroot, Wadah Talal, Ali Alfaris, Younus Hamoudi Assaf, Mohammed Y. Nawaf, Mothana Bdaiwi and Jawad Khudhur    
In this study, it is proposed to generate electrical energy by recovering the waste heat of an annealing furnace (AF) in an iron and steel plant using combined cycles such as steam Rankine cycle (SRC), organic Rankine cycle (ORC), Kalina cycle (KC) and t... ver más
Revista: Applied Sciences

 
Mariia Pokushko, Alena Stupina, Inmaculada Medina-Bulo, Svetlana Ezhemanskaya, Roman Kuzmich and Roman Pokushko    
The aim of this study is to solve the problem of increasing the efficiency of fuel and energy complex enterprises. Because such enterprises are complex systems, it is difficult to optimize their work, taking into account all the technical indicators of s... ver más
Revista: Algorithms