Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 24 (2023)  /  Artículo
ARTÍCULO
TITULO

Research on Shovel-Force Prediction and Power-Matching Optimization of a Large-Tonnage Electric Wheel Loader

Jiajie Wei    
Jiazhi Zhao and Jixin Wang    

Resumen

The proposed methods for predicting shovel force and power-matching optimization can enhance the operational efficiency of large-tonnage electric wheel loader.

 Artículos similares

       
 
Hugo López-Fernández     Pág. 22 - 25
Mass spectrometry using matrix assisted laser desorption ionization coupled to time of flight analyzers (MALDI-TOF MS) has become popular during the last decade due to its high speed, sensitivity and robustness for detecting proteins and peptides. This a... ver más

 
Damny Magdaleno Guevara, Yadriel Miranda, Ivett Fuentes, María Garc ía     Pág. 69 - 80
A huge amount of information is represented in XML format. Several tools have been developed to store, and query XML data. It becomes inevitable to develop high performance techniques for efficiently analysing extremely large collections of XML data. O... ver más

 
Mohamed Shenify, Fokrul Alom Mazarbhuiya and A. S. Wungreiphi    
There are many applications of anomaly detection in the Internet of Things domain. IoT technology consists of a large number of interconnecting digital devices not only generating huge data continuously but also making real-time computations. Since IoT d... ver más
Revista: Applied Sciences

 
Falah Amer Abdulazeez, Ismail Taha Ahmed and Baraa Tareq Hammad    
A significant quantity of malware is created on purpose every day. Users of smartphones and computer networks now mostly worry about malware. These days, malware detection is a major concern in the cybersecurity area. Several factors can impact malware d... ver más
Revista: Applied Sciences

 
Yugen Yi, Haoming Zhang, Ningyi Zhang, Wei Zhou, Xiaomei Huang, Gengsheng Xie and Caixia Zheng    
As the feature dimension of data continues to expand, the task of selecting an optimal subset of features from a pool of limited labeled data and extensive unlabeled data becomes more and more challenging. In recent years, some semi-supervised feature se... ver más
Revista: Information