Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Infrastructures  /  Vol: 8 Par: 5 (2023)  /  Artículo
ARTÍCULO
TITULO

Numerical and Experimental Behavior Analysis of Slabs Strengthened Using Steel Plates and Slurry-Infiltrated Mat Concrete (SIMCON) Laminates

Ali Sadik Gafer Qanber    
Mohammed H. Yas and Mohammed M. Kadhum    

Resumen

This study has two main aims; firstly, investigating the behavior of slabs that are strengthened with different types of reinforcements and with Slurry-Infiltrated Mat Concrete (SIMCON) laminates, having different dimensions and thicknesses and subjected to static and dynamic (impact) loads. Secondly, the development of a non-linear finite element (FE) model to simulate the behavior of the tested slabs utilizing the ABAQUS/Standard package. The modeling of the NSC slabs strengthened with either SIMCON or steel plates involves using three-dimensional solid elements that are partially integrated with the modeling of concretes using the 8-node brick element (C3D8R). The results of the experimental and numerical investigations are compared to examine whether the slab modeling is sufficient. The comparison includes the element type, material characteristics, real constants, and convergence study. The predicted ultimate load-carrying capacity versus vertical deformation response is compared with the lab results that correspond with it, as obtained via the FE analysis of all tested slabs. In addition, the results of the FE analysis of slab specimens that are strengthened with steel plates were compared to the results of the ones strengthened using SIMCON laminates. The obtained results have led to a number of significant observations. Considering the punching shear strength, it was found that using SIMCON strengthening in different dimensions increased the slab?s punching shear capacity and outperformed steel-strengthened slabs. As for the plate stiffness, SIMCON-strengthened slabs presented higher stiffness rates than steel-strengthened slabs, to the extent that even 20 mm SIMCON strengthening outperformed the steel plate-strengthened slabs of any thickness or dimensions. The axial load-displacement relationships indicate that all the numerical models show a stiffer behavior when compared with the experimental axial load-displacement relationships. The slab thickness of SIMCON significantly affects the load-carrying capacity, and it increases with the increase in thickness. Likewise, using strengthening from steel plates gives a higher load-carrying capacity. Finally, since the results of the yield line analyses for these slabs are found to match the experimental results closely, this method is considered to be suitable for practical use in determining the strength of plated slabs. Therefore, the conclusion is drawn that the proposed FE model can be sufficiently used in evaluating the dynamic responses of slabs strengthened with SIMCON or steel plates and subjected to cyclic and impact load.

 Artículos similares

       
 
Omer Faruk Can, Nevin Celik, Filiz Ozgen, Celal Kistak and Ali Taskiran    
In this study, a numerical and experimental analysis of a solar collector with roughness elements in the form of stainless-steel scourers on the absorber surface is presented. According to the location type and number of the stainless steel scourers, the... ver más
Revista: Applied Sciences

 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Abdul Basit, Safeer Abbas, Muhammad Mubashir Ajmal, Ubaid Ahmad Mughal, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir    
This study undertakes a comprehensive experimental and numerical analysis of the structural integrity of buried RC sewerage pipes, focusing on the performance of two distinct jointing materials: cement mortar and non-shrinkage grout. Through joint shear ... ver más
Revista: Infrastructures

 
Annie Rose Elizabeth, Sumit Sarma, T. Jayachandran, P. A. Ramakrishna and Mondeep Borthakur    
Multiple applications in aerospace utilize pyrotechnic charges for their operation, and these charges are predominantly in the form of granules. One of the most used charges is boron potassium nitrate (BPN), and the present study focuses on mathematicall... ver más
Revista: Aerospace

 
Zhenlong Wu, Tianyu Zhang, Yuan Gao and Huijun Tan    
In this paper, a novel small-scale gust generator research facility was designed and examined for generating Sears-type gusts. The design scheme, integration with the wind tunnel, experiment and validation of its capability are presented in detail. To he... ver más
Revista: Aerospace