Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Signal Filtering Using Neuromorphic Measurements

Dorian Florescu and Daniel Coca    

Resumen

Digital filtering is a fundamental technique in digital signal processing, which operates on a digital sequence without any information on how the sequence was generated. This paper proposes a methodology for designing the equivalent of digital filtering for neuromorphic samples, which are a low-power alternative to conventional digital samples. In the literature, filtering using neuromorphic samples is performed by filtering the reconstructed analog signal, which is required to belong to a predefined input space. We show that this requirement is not necessary, and introduce a new method for computing the neuromorphic samples of the filter output directly from the input samples, backed by theoretical guarantees. We show numerically that we can achieve a similar accuracy compared to that of the conventional method. However, given that we bypass the analog signal reconstruction step, our results show significantly reduced computation time for the proposed method and good performance even when signal recovery is not possible.