Resumen
The aim of this paper was to develop a master?slave model with fluid-thermo-structure (FTS) interaction for the thermal fatigue life prediction of a thermal barrier coat (TBC) in a nozzle guide vane (NGV). The master?slave model integrates the phenomenological life model, multilinear kinematic hardening model, fully coupling thermal-elastic element model, and volume element intersection mapping algorithm to improve the prediction precision and efficiency of thermal fatigue life. The simulation results based on the developed model were validated by temperature-sensitive paint (TSP) technology. It was demonstrated that the predicted temperature well catered for the TSP tests with a maximum error of less than 6%, and the maximum thermal life of TBC was 1558 cycles around the trailing edge, which is consistent with the spallation life cycle of the ceramic top coat at 1323 K. With the increase of pre-oxidation time, the life of TBC declined from 1892 cycles to 895 cycles for the leading edge, and 1558 cycles to 536 cycles for the trailing edge. The predicted life of the key points at the leading edge was longer by 17.7?40.1% than the trailing edge. The developed master?slave model was validated to be feasible and accurate in the thermal fatigue life prediction of TBC on NGV. The efforts of this study provide a framework for the thermal fatigue life prediction of NGV with TBC.