Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 16 (2020)  /  Artículo
ARTÍCULO
TITULO

A Novel Hybrid Decomposition?Ensemble Prediction Model for Dam Deformation

Enhua Cao    
Tengfei Bao    
Chongshi Gu    
Hui Li    
Yongtao Liu and Shaopei Hu    

Resumen

Accurate and reliable prediction of dam deformation (DD) is of great significance to the safe and stable operation of dams. In order to deal with the fluctuation characteristics in DD for more accurate prediction results, a new hybrid model based on a decomposition-ensemble model named VMD-SE-ER-PACF-ELM is proposed. First, the time series data are decomposed into subsequences with different frequencies and an error sequence (ER) by variational mode decomposition (VMD), and then the secondary decomposition method is introduced into the prediction of ER. In these two decomposition processes, the sample entropy (SE) method is innovatively utilized to determine the decomposition modulus. Then, the input variables of the subsequences are selected by partial autocorrelation analysis (PACF). Finally, the parameter-optimization-based extreme learning machine (ELM) models are used to predict the subsequences, and the outputs are reconstructed to obtain the final prediction results. The case analysis shows that the VMD-SE-ER-PACF-ELM model has strong prediction ability for DD. The model is then compared with other nonlinear and time series models, and its performance under different prediction periods is also analyzed. The results show that the proposed model is able to adequately describe the original DD. It performs well in both training and testing stages. It is a preferred data-driven model for DD prediction and can provide a priori knowledge for health monitoring of dams.

 Artículos similares

       
 
Jing Luo, Yuhang Zhang, Jiayuan Zhuang and Yumin Su    
The development of intelligent task allocation and path planning algorithms for unmanned surface vehicles (USVs) is gaining significant interest, particularly in supporting complex ocean operations. This paper proposes an intelligent hybrid algorithm tha... ver más

 
MohammadHossein Reshadi, Wen Li, Wenjie Xu, Precious Omashor, Albert Dinh, Scott Dick, Yuntong She and Michael Lipsett    
Anomaly detection in data streams (and particularly time series) is today a vitally important task. Machine learning algorithms are a common design for achieving this goal. In particular, deep learning has, in the last decade, proven to be substantially ... ver más
Revista: Algorithms

 
Li Li and Kyung Soo Jun    
River flood routing computes changes in the shape of a flood wave over time as it travels downstream along a river. Conventional flood routing models, especially hydrodynamic models, require a high quality and quantity of input data, such as measured hyd... ver más
Revista: Water

 
Nosa Aikodon, Sandra Ortega-Martorell and Ivan Olier    
Patients in Intensive Care Units (ICU) face the threat of decompensation, a rapid decline in health associated with a high risk of death. This study focuses on creating and evaluating machine learning (ML) models to predict decompensation risk in ICU pat... ver más
Revista: Algorithms

 
Alireza Rezvanian, S. Mehdi Vahidipour and Ali Mohammad Saghiri    
Artificial immune systems (AIS), as nature-inspired algorithms, have been developed to solve various types of problems, ranging from machine learning to optimization. This paper proposes a novel hybrid model of AIS that incorporates cellular automata (CA... ver más
Revista: Algorithms