Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Comparative Study of Clustering Approaches Applied to Spatial or Temporal Pattern Discovery

Kelly Grassi    
Émilie Poisson-Caillault    
André Bigand and Alain Lefebvre    

Resumen

In the framework of ecological or environmental assessments and management, detection, characterization and forecasting of the dynamics of environmental states are of paramount importance. These states should reflect general patterns of change, recurrent or occasional events, long-lasting or short or extreme events which contribute to explain the structure and the function of the ecosystem. To identify such states, many scientific consortiums promote the implementation of Integrated Observing Systems which generate increasing amount of complex multivariate/multisource/multiscale datasets. Extracting the most relevant ecological information from such complex datasets requires the implementation of Machine Learning-based processing tools. In this context, we proposed a divisive spectral clustering architecture?the Multi-level Spectral Clustering (M-SC) which is, in this paper, extended with a no-cut criteria. This method is developed to perform detection events for data with a complex shape and high local connexity. While the M-SC method was firstly developed and implemented for a given specific case study, we proposed here to compare our new M-SC method with several existing direct and hierarchical clustering approaches. The clustering performance is assessed from different datasets with hard shapes to segment. Spectral methods are most efficient discovering all spatial patterns. For the segmentation of time series, hierarchical methods better isolated event patterns. The new M-SC algorithm, which combines hierarchical and spectral approaches, give promise results in the segmentation of both spatial UCI databases and marine time series compared to other approaches. The ability of our M-SC method to deal with many kinds of datasets allows a large comparability of results if applies within a broad Integrated Observing Systems. Beyond scientific knowledge improvements, this comparability is crucial for decision-making about environmental management.

 Artículos similares

       
 
Camino Eck, Xiaoyu Kröner and Dorte Janussen    
This study investigates taxonomic characteristics of carnivorous sponges from the Southern Ocean. The specimens were collected in 2010 from deep-sea hydrothermal vents of the East Scotia Ridge during the RRS James Cook Cruise JC42. All the investigated s... ver más

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Shizhen Li, Qinfeng Wu, Yufeng Liu, Longfei Qiao, Zimeng Guo and Fei Yan    
To mitigate the interference of waves on an offshore operation ship, heave compensation systems find widespread application. The performance of heave compensation systems significantly influences the efficiency and safety of maritime operations. This stu... ver más

 
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace

 
Kristina Mazur, Mischa Saleh and Mirko Hornung    
Early and rapid environmental assessment of newly developed aircraft concepts is eminent in today?s climate debate. This can shorten the decision-making process and thus accelerate the entry into service of climate-friendly technologies. A holistic appro... ver más
Revista: Aerospace