Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Conceptual Design of a Vibration Test System Based on a Wave Generator Channel for Lab-Scale Offshore Wind Turbine Jacket Foundations

Ángel Encalada-Dávila    
Lenín Pardo    
Yolanda Vidal    
Efraín Terán and Christian Tutivén    

Resumen

Structural health monitoring (SHM) systems are designed to continually monitor the health of structures (e.g., civil, aeronautic) by using the information collected through a distributed sensor network. However, performing tests on real structures, such as wind turbines, implies high logistic and operational costs. Therefore, there is a need for a vibration test system to evaluate designs at smaller scales in a laboratory setting in order to collect data and devise predictive maintenance strategies. In this work, the proposed vibration test system is based on a lab-scale wind turbine jacket foundation related primarily to an offshore environment. The test system comprises a scaled wave generator channel, a desktop application (WTtest) to control the channel simulations, and a data acquisition system (DAQ) to collect the information from the sensors connected to the structure. Various equipment such as accelerometers, electrodynamic shaker, and DAQ device are selected as per the design methodology. Regarding the mechanical part, each component of the channel is designed to be like the wave absorber, the mechanical multiplier, the piston-type wavemaker, and the wave generator channel. For this purpose, the finite element method is used in static and fatigue analysis to evaluate the stresses and deformations; this helps determine whether the system will work safely. Moreover, the vibration test system applies to other jacket structures as well, giving it greater utility and applicability in different research fields. In sum, the proposed system is compact and has three well-defined components that work synchronously to develop the experimental simulations.