Resumen
The effective production scheduling of dry bulk ports is a challenging task that demands meticulous planning, task allocation based on customer requirements, as well as strategic route and timing scheduling. Dry bulk ports dedicated to handling commodities like coal and iron ore frequently engage in blending operations as a strategic imperative to gain market competitiveness. The process of blending coal and ore entails the timely arrival of the requisite raw materials at predetermined locations. Simultaneously, it necessitates the coordination of the sequencing of goods entering and departing the port to align with the operational demands associated with material stockpiles. This paper describes and analyzes an operational scheduling problem encountered by one of the largest coal blending sea ports in China. Specifically, a rich constraint programming model is presented to define operation sequences integrating daily inbound and outbound services provided by the port, minimizing the overall operation time. In order to enhance the practicality of the method, a CP-based adaptive simulated annealing local search algorithm has been designed and developed for the optimization problem. The empirical validation of the proposed method is conducted using both real production data and generated experimental data adhering to specific rules. The results conclusively demonstrate the efficacy and feasibility of the proposed method. This also substantiates its practicality and effectiveness in real-world applications, facilitating efficient production and energy-saving operations for the coal port.