Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Water  /  Vol: 11 Par: 2 (2019)  /  Artículo
ARTÍCULO
TITULO

Using Tabu Search Adjusted with Urban Sewer Flood Simulation to Improve Pluvial Flood Warning via Rainfall Thresholds

Hao-Yu Liao    
Tsung-Yi Pan    
Hsiang-Kuan Chang    
Chi-Tai Hsieh    
Jihn-Sung Lai    
Yih-Chi Tan and Ming-Daw Su    

Resumen

Pluvial floods are the most frequent natural hazard impacting urban cities because of extreme rainfall intensity within short duration. Owing to the complex interaction between rainfall, drainage systems and overland flow, pluvial flood warning poses a challenge for many metropolises. Although physical-based flood inundation models could identify inundated locations, hydrodynamic modeling is limited in terms of computational costs and sophisticated calibration. Thus, herein, a quick pluvial flood warning system using rainfall thresholds for central Taipei is developed. A tabu search algorithm is implemented with hydrological-analysis-based initial boundary conditions to optimize rainfall thresholds. Furthermore, a cross test is adopted to evaluate the effect of each rainfall event on rainfall threshold optimization. Urban sewer flood is simulated via hydrodynamic modeling with calibration using crowdsourced data. The locations and time of occurrence of pluvial floods can be obtained to increase the quality of observed data that dominate the accuracy of pluvial flood warning when using rainfall thresholds. The optimization process is a tabu search based on flood reports and observed data for six flood-prone districts in central Taipei. The results show that optimum rainfall thresholds can be efficiently determined through tabu search and the accuracy of the issued flood warnings can be significantly improved.

 Artículos similares

       
 
Martina Hauser, Stefan Reinstaller, Martin Oberascher, Dirk Muschalla and Manfred Kleidorfer    
Owing to climate change, heavy rainfall events have increased in recent years, often resulting in urban flooding. Urban flood models usually consider buildings to be closed obstacles, which is not the case in reality. To address this research gap, an exi... ver más
Revista: Water

 
Shees Ur Rehman, Afzal Ahmed, Gordon Gilja, Manousos Valyrakis, Abdul Razzaq Ghumman, Ghufran Ahmed Pasha and Rashid Farooq    
Nature-based solutions (NBSs) always provide optimal opportunities for researchers and policymakers to develop sustainable and long-term solutions for mitigating the impacts of flooding. Computing the hydrological process in hilly areas is complex compar... ver más
Revista: Water

 
Idi Souley Tangam, Roland Yonaba, Dial Niang, Mahaman Moustapha Adamou, Amadou Keïta and Harouna Karambiri    
This study focuses on the Sirba River Basin (SRB), a transboundary West African catchment of 38,950 km2 shared by Burkina Faso and Niger, which contributes to flooding downstream in Niamey (Niger). The study uses the HEC-HMS hydrological model to explore... ver más
Revista: Hydrology

 
Ali Aldrees, Abdulrasheed Mohammed, Salisu Dan?azumi and Sani Isah Abba    
Flooding is a major environmental problem facing urban cities, causing varying degrees of damage to properties and disruption to socio-economic activities. Nigeria is the most populous African country and Kano metropolis is the second largest urban cente... ver más
Revista: Water

 
Beata Baziak, Marek Bodziony and Robert Szczepanek    
Machine learning models facilitate the search for non-linear relationships when modeling hydrological processes, but they are equally effective for automation at the data preparation stage. The tasks for which automation was analyzed consisted of estimat... ver más
Revista: Hydrology