Resumen
Heavy forklifts that are widely used in ports and stations have large gravitational potential energy at the lowering of the boom. As concerning the large rated power level, the engine is still the main power source for the heavy forklifts. With the increasingly stringent emissions regulations, the electric heavy forklift becomes an important choice. The structure and the working mode of an electric heavy forklift are introduced. Additionally the schematic of double hydraulic motor-generators is adopted to regenerate the potential energy when the boom is descending. The judge rule of the working mode and control strategy are analyzed. A test rig of a prototype electric heavy forklift is established. Control mode discrimination of potential energy regeneration, the control performance and the influence factors on regeneration efficiency are tested based on the test rig. The experimental results show that the discrimination method of the working mode of the proposed double hydraulic motor-generators with a potential energy regeneration system for potential energy is feasible. The descending of the lifting cylinder is consistent with the handle. The forklift can obtain the good following ability. Although the lifting cylinder descends at low velocity, the velocity is stable and the fluctuation of the rodless chamber pressure is within 0.1 MPa. With the increase of the load mass and descending velocity, the regeneration efficiency increases accordingly. The maximum efficiency is up to 74%. Hence, the proposed potential energy regeneration system is feasible and potential energy regeneration system does not affect the control performance of the boom.